These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structural changes of the thylakoid membrane network induced by high light stress in plant chloroplasts.
    Author: Kirchhoff H.
    Journal: Philos Trans R Soc Lond B Biol Sci; 2014 Apr 19; 369(1640):20130225. PubMed ID: 24591712.
    Abstract:
    Land plants live in a challenging environment dominated by unpredictable changes. A particular problem is fluctuation in sunlight intensity that can cause irreversible damage of components of the photosynthetic apparatus in thylakoid membranes under high light conditions. Although a battery of photoprotective mechanisms minimize damage, photoinhibition of the photosystem II (PSII) complex occurs. Plants have evolved a multi-step PSII repair cycle that allows efficient recovery from photooxidative PSII damage. An important feature of the repair cycle is its subcompartmentalization to stacked grana thylakoids and unstacked thylakoid regions. Thus, understanding the crosstalk between stacked and unstacked thylakoid membranes is essential to understand the PSII repair cycle. This review summarizes recent progress in our understanding of high-light-induced structural changes of the thylakoid membrane system and correlates these changes to the efficiency of the PSII repair cycle. The role of reversible protein phosphorylation for structural alterations is discussed. It turns out that dynamic changes in thylakoid membrane architecture triggered by high light exposure are central for efficient repair of PSII.
    [Abstract] [Full Text] [Related] [New Search]