These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preconditioning of mesenchymal stem cells by sevoflurane to improve their therapeutic potential. Author: Sun X, Fang B, Zhao X, Zhang G, Ma H. Journal: PLoS One; 2014; 9(3):e90667. PubMed ID: 24599264. Abstract: BACKGROUND: Bone marrow mesenchymal stem cells (MSCs) have been found to produce beneficial effects on ischemia-reperfusion injury. However, most of the MSCs died when transplanted into the ischemic tissue, which severely limit their therapeutic potential. METHODS: Using an in vitro model of hypoxia and serum deprivation (H/SD), we investigated the hypothesis that sevoflurane preconditioning could protect MSCs against H/SD-induced apoptosis and improve their migration, proliferation, and therapeutic potential. The H/SD of MSCs and neuron-like PC12 cells were incubated in a serum-free medium and an oxygen concentration below 0.1% for 24 h. Sevoflurane preconditioning was performed through a 2-h incubation of MSCs in an airtight chamber filled with 2 vol% sevoflurane. Apoptosis of MSCs or neuron-like PC12 cells was assessed using Annexin V-FITC/propidium iodide (PI). Furthermore, the mitochondrial membrane potential was assessed using lipophilic cationic probe. The proliferation rate was evaluated through cell cycle analysis. Finally, HIF-1α, HIF-2α, VEGF and p-Akt/Akt levels were measured by western blot. RESULTS: Sevoflurane preconditioning minimized the MSCs apoptosis and loss of mitochondrial membrane potential. Furthermore, it increased the migration and expression of HIF-1α, HIF-2α, VEGF, and p-Akt/Akt, reduced by H/SD. In addition, neuron-like PC12 cells were more resistant to H/SD-induced apoptosis when they were co-cultured with sevoflurane preconditioning MSCs. CONCLUSION: These findings suggest that sevoflurane preconditioning produces protective effects on survival and migration of MSCs against H/SD, as well as improving the therapeutic potential of MSCs. These beneficial effects might be mediated at least in part by upregulating HIF-1α, HIF-2α, VEGF, and p-Akt/Akt.[Abstract] [Full Text] [Related] [New Search]