These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: IL-6-accelerated calcification by induction of ROR2 in human adipose tissue-derived mesenchymal stem cells is STAT3 dependent.
    Author: Fukuyo S, Yamaoka K, Sonomoto K, Oshita K, Okada Y, Saito K, Yoshida Y, Kanazawa T, Minami Y, Tanaka Y.
    Journal: Rheumatology (Oxford); 2014 Jul; 53(7):1282-90. PubMed ID: 24599911.
    Abstract:
    OBJECTIVE: The mechanisms of ectopic calcification in inflammatory diseases are poorly understood. We investigated the effects of inflammatory cytokines on the mechanisms of calcification in human adipose tissue-derived mesenchymal stem cells (hADSCs). METHODS: The effects of inflammatory cytokines were evaluated using hADSCs cultured in osteoblast induction medium. mRNA expression was measured by real-time PCR and protein levels were measured by western blotting. Cell mineralization was evaluated by Alizarin Red S staining. RESULTS: In hADSCs, administration of IL-6/soluble IL-6 receptor (sIL-6R), TNF or IL-1β accelerated calcification through enhanced expression of an osteoblast differentiation marker, runt-related transcription factor 2 (RUNX2). IL-6/sIL-6R had the greatest effect. The transcription of mRNA for receptor tyrosine kinase-like orphan receptor 2 (ROR2), involved in the non-canonical wingless-type (WNT) MMTV integration site pathway, was increased, while β-catenin expression, an essential factor in the canonical WNT signalling pathway for osteoblast differentiation, did not change. Suppression of signal transducer and activator of transcription 3 (STAT3), but not STAT1, by small interfering RNA (siRNA) exerted a strong inhibitory effect on RUNX2 and ROR2 expression, and inhibited accelerated calcification. CONCLUSION: IL-6/sIL-6R stimulation accelerated the ROR2/WNT5A pathway in hADSCs in a STAT3-dependent manner, resulting in augmented calcification. These results suggest that the mechanisms of ectopic calcification accelerated by IL-6 in hADSCs may be involved in chronic inflammatory tissues and that IL-6 inhibitors may be beneficial in the treatment of ectopic calcification in inflammatory diseases.
    [Abstract] [Full Text] [Related] [New Search]