These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Egr1 mediated the neuronal differentiation induced by extremely low-frequency electromagnetic fields.
    Author: Seong Y, Moon J, Kim J.
    Journal: Life Sci; 2014 Apr 25; 102(1):16-27. PubMed ID: 24603130.
    Abstract:
    AIM: There is a specific frequency of extremely low-frequency electromagnetic field (ELF-EMF) that promotes neuronal differentiation. Although several mechanisms are known to regulate ELF-EMF-induced neuronal differentiation, a key factor that mediates neurogenic potentials by the ELF-EMF is largely unknown. Also, the potential use of ELF-EMF exposure in cell transplantation assays is yet to be determined, including their possible use in ELF-EMF based therapy of neurological diseases. The aim of this study is to understand the underlying mechanisms that mediate ELF-EMF-induced neuronal differentiation and also to harness these mechanisms for cell transplantation assays. MAIN METHOD: Human bone marrow-mesenchymal stem cells (hBM-MSCs) were exposed to ELF-EMF (50 Hz frequency, 1mT intensity) for 8 days. The hBM-MSC derived neurons were then analyzed by general molecular biology techniques including immunofluorescence and quantitative RT-PCR. To assess changes in gene expression induced by ELF-EMF exposure, we analyzed the transcriptome of neuronal cells after an 8-day ELF-EMF exposure (50 Hz, 1 mT) and compared the transcriptional profiles to control cells. KEY FINDING: We found that early growth response protein 1 (Egr1) is one of the key transcription factors in ELF-EMF-induced neuronal differentiation. In addition, we show that transplantations of ELF-EMF-induced neurons significantly alleviate symptoms in mouse models of neurodegenerative disease. SIGNIFICANCE: These findings indicate that a specific transcriptional factor, Egr1, mediates ELF-EMF-induced neuronal differentiations, and demonstrate the promise of ELF-EMF based cell replacement therapies for neurodegenerative diseases.
    [Abstract] [Full Text] [Related] [New Search]