These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Polychlorinated biphenyl quinone induces mitochondrial-mediated and caspase-dependent apoptosis in HepG2 cells. Author: Xu D, Li L, Liu L, Dong H, Deng Q, Yang X, Song E, Song Y. Journal: Environ Toxicol; 2015 Sep; 30(9):1063-72. PubMed ID: 24604693. Abstract: Polychlorinated biphenyl (PCB) quinones are known to cause toxic effects, but their mechanisms are quite unclear. In this study, we examined whether 2,3,5-trichloro-6-phenyl-[1,4]benzoquinone, PCB29-pQ, induces cell death via apoptosis pathway. Our result showed PCB29-pQ exposure decreased HepG2 cell viability in a time-dependent manner. Lactate dehydrogenase leakage assay also implied the cytotoxicity of PCB29-pQ. 4',6-Diamidino-2-phenylindole dihydrochloride staining and flow cytometry assays both confirmed PCB29-pQ caused dose-dependent apoptotic cell death in HepG2 cells. Furthermore, we found that PCB29-pQ exposure increased cellular reactive oxygen species (ROS) level, decreased mitochondrial membrane potential and induced the translocation of cytochrome c from mitochondria into cytosol in HepG2 cells. Moreover, PCB29-pQ exposure induced B-cell lymphoma 2 (Bcl-2) downregulation and Bcl-2-associated X (Bax) upregulation, poly(ADP-ribose) polymerase cleavage, accompanied with the increased caspase-3/9 and p53 expressions. Taking together, these results suggested PCB29-pQ induced HepG2 cells apoptosis through a ROS-driven, mitochondrial-mediated and caspase-dependent pathway.[Abstract] [Full Text] [Related] [New Search]