These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evodiamine might inhibit TGF-beta1-induced epithelial-mesenchymal transition in NRK52E cells via Smad and PPAR-gamma pathway.
    Author: Wei J, Li Z, Yuan F.
    Journal: Cell Biol Int; 2014 Jul; 38(7):875-80. PubMed ID: 24604887.
    Abstract:
    Epithelial-mesenchymal transition (EMT) is involved in renal tubulointerstitial fibrosis. Transforming growth factor (TGF)-beta1 is the main inducer of EMT. Phosphorylation of Smad proteins and PPAR-gamma activation are required for the process of TGF-beta1-induced EMT. Evodiamine possesses anti-inflammatory, anti-obesity, anti-cancer, and anti-nociceptive effects. We have examined the effects of evodiamine in EMT induced by TGF-beta1 and the role of Smad and PPAR-gamma signal pathway in rat renal proximal tubular epithelial (NRK52E) cells in vitro. E-cadherin, alpha-smooth muscle actin (SMA), Smad 2 and PPAR-gamma mRNA and protein expressions were detected by real-time PCR and Western blot, respectively. NRK52E treated with TGF-beta1 for 48 h induced EMT, as evidenced by loss of E-cadherin and de novo expression of alpha-SMA. EMT was almost completely blocked by evodiamine and rosiglitazone. TGF-beta1 significantly increased Smad 2 expression and decreased PPAR-gamma expression in NRK52E cells compared with the control group, while evodiamine and rosiglitazone almost reversed these effects. These observations suggest that evodiamine and rosiglitazone inhibit TGF-beta1-induced EMT in NRK52E cells. Smad 2 and PPAR-gamma signal pathway might participate in the effects of evodiamine and rosiglitazone in EMT induced by TGF-beta1.
    [Abstract] [Full Text] [Related] [New Search]