These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Downregulation of Homer1b/c improves neuronal survival after traumatic neuronal injury. Author: Fei F, Rao W, Zhang L, Chen BG, Li J, Fei Z, Chen Z. Journal: Neuroscience; 2014 May 16; 267():187-94. PubMed ID: 24607348. Abstract: Homer protein, a member of the post-synaptic density protein family, plays an important role in the neuronal synaptic activity and is extensively involved in neurological disorders. The present study investigates the role of Homer1b/c in modulating neuronal survival by using an in vitro traumatic neuronal injury model, which was achieved by using a punch device that consisted of 28 stainless steel blades joined together and produced 28 parallel cuts. Downregulation of Homer1b/c by specific siRNA significantly (p<0.05) alleviated the cytoplasmic calcium levels and neuron lactate dehydrogenase release, and ultimately decreased the apoptotic rate after traumatic neuronal injury compared with non-targeting siRNA control treatment in cultured rat cortical neurons. Moreover, the expression of metabotropic glutamate receptor 1a (mGluR1a) was significantly (p<0.05) reduced in the Homer1b/c siRNA-transfected neurons after injury. Therefore, Homer1b/c not only modulated the mGluR1a-inositol 1,4,5-triphosphate receptors-Ca(2+) signal transduction pathway, but also regulated the expression of mGluR1a in mechanical neuronal injury. These findings indicate that the suppression of Homer1b/c expression potentially protects neurons from glutamate excitotoxicity after injury and might be an effective intervention target in traumatic brain injury.[Abstract] [Full Text] [Related] [New Search]