These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Quercetin enhances apoptotic effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in ovarian cancer cells through reactive oxygen species (ROS) mediated CCAAT enhancer-binding protein homologous protein (CHOP)-death receptor 5 pathway.
    Author: Yi L, Zongyuan Y, Cheng G, Lingyun Z, Guilian Y, Wei G.
    Journal: Cancer Sci; 2014 May; 105(5):520-7. PubMed ID: 24612139.
    Abstract:
    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has shown efficacy in a phase 2 clinical trial, development of resistance to TRAIL by tumor cells is a major roadblock. We investigated whether quercetin, a flavonoid, can sensitize human ovarian cancer cells to TRAIL. Results indicate that quercetin sensitized cancer cells to TRAIL. The quercetin induced expression of death receptor DR5 but did not affect expression of DR4 in cancer cells. The induction of DR5 was mediated through activation of JNK and through upregulation of a transcription factor CCAAT enhancer-binding protein homologous protein (CHOP); as silencing of these signaling molecules abrogated the effect of quercetin. Upregulation of DR5 was mediated through the generation of reactive oxygen species (ROS), as ROS scavengers reduced the effect of quercetin on JNK activation, CHOP upregulation, DR induction, TRAIL sensitization, downregulated the expression of cell survival proteins and upregulated the proapoptotic proteins. Furthermore, quercetin enhances TRAIL mediated inhibition of tumor growth of human SKOV-3 xenograft was associated with induction of apoptosis, activation of caspase-3, CHOP and DR5. Overall, our data suggest that quercetin enhances apoptotic death of ovarian cancer cells to TRAIL through upregulation of CHOP-induced DR5 expression following ROS mediated endoplasmic reticulum-stress.
    [Abstract] [Full Text] [Related] [New Search]