These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The type X collagen gene. Intron sequences split the 5'-untranslated region and separate the coding regions for the non-collagenous amino-terminal and triple-helical domains. Author: LuValle P, Ninomiya Y, Rosenblum ND, Olsen BR. Journal: J Biol Chem; 1988 Dec 05; 263(34):18378-85. PubMed ID: 2461368. Abstract: Type X collagen, expressed by hypertrophic chondrocytes, consists of homotrimeric molecules with subunits that are only about one-half the size of the polypeptides of fibrillar collagens. In this report we describe for the first time the complete primary structure of type X collagen, based on cloning and sequencing of cDNA and genomic DNA. A comparison between the nucleotide sequences of the cDNA and genomic DNA clones has also allowed determination of the complete exon structure of the type X collagen gene. Our results demonstrate that the primary translation product of the chicken type X collagen mRNA is 682 amino acid residues long with a calculated molecular mass of 67,317 Da for the nonhydroxylated form. This calculated molecular mass is in excellent agreement with the observed electrophoretic mobility of cell-free translation products with both poly(A)+ RNA isolated from chondrocytes as well as RNA transcribed in vitro from a full length cDNA construct. It is also in agreement with the observed size of type X collagen polypeptides isolated from the media of cultured hypertrophic chondrocytes. Thus, our data exclude the possibility of a high molecular weight precursor form of type X collagen. Our results also confirm that the chicken type X gene has a most unusual exon structure when compared to other vertebrate collagen genes. The gene has only three exons. One exon (97 base pairs (bp)), codes for most of the 5'-untranslated region of the mRNA, a second exon (159 bp) codes for the signal peptide and a short non-triple-helical domain, while the third exon (2136 bp) contains the coding region for the entire triple-helix and a large non-triple-helical carboxyl domain.[Abstract] [Full Text] [Related] [New Search]