These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Wet milling induced physical and chemical instabilities of naproxen nano-crystalline suspensions.
    Author: Kumar S, Burgess DJ.
    Journal: Int J Pharm; 2014 May 15; 466(1-2):223-32. PubMed ID: 24614581.
    Abstract:
    Wet-milling is the most common approach to formulate nano-crystalline suspensions. The effect of high intensity wet-milling on the physical and chemical stability of a poorly soluble drug was investigated. Naproxen (1%, w/v) was suspended in two different stabilizers (i.e. HPMC E15 and Tween 80) and stabilizer concentrations (0.2% or 0.6%, w/v) in distilled water. Wet-milling was performed at two different speeds (i.e. 3,400 rpm and 2,000 rpm) for four continuous hours. The milled samples were analyzed for physical and chemical instabilities. Wet-milling of naproxen-HPMC E15 at high milling intensity caused both physical and chemical instabilities as observed by particle size measurement and chemical analysis, respectively. The naproxen-Tween 80 formulations were stable regardless of milling intensity. Naproxen-HPMC E15 wet-milled samples, showed an IR peak shift suggesting strong bond formation or molecular interaction (i.e. amorphous phase). In addition, naproxen has a strong interaction with HPMC E15 as determined by MTDSC (i.e. melting point depression). The generation of amorphous phase at the naproxen-HPMC E15 crystal surface may be responsible for both aggregation and degradation during wet milling. Decarboxylated naproxen was identified as a degradation product. Milling intensity and/or selection of stabilizer/s are crucial for the stability of nano-crystalline suspensions.
    [Abstract] [Full Text] [Related] [New Search]