These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Porcine natriuretic peptide type B (pNPPB) maintains mouse oocyte meiotic arrest via natriuretic peptide receptor 2 (NPR2) in cumulus cells.
    Author: Zhang Y, Hao X, Xiang X, Wei K, Xia G, Zhang M.
    Journal: Mol Reprod Dev; 2014 May; 81(5):462-9. PubMed ID: 24615855.
    Abstract:
    In mouse ovarian follicles, the oocyte is maintained in meiotic prophase arrest by natriuretic peptide type C (NPPC) acting via its cognate receptor, natriuretic peptide receptor 2 (NPR2). As there is a marked species difference in the receptor selectivity of the natriuretic peptide family, this study examined the functional effect of other natriuretic peptides, type A (NPPA) and type B (NPPB), acting via NPR2 on mouse-oocyte meiotic arrest. The results by quantitative, reverse-transcriptase PCR showed that Npr2 was the predominant natriuretic peptide receptor transcript, and that Npr1 and Npr3 mRNA levels were negligible in cumulus cells isolated from equine chorionic gonadotropin (eCG)-primed, immature female mice. While NPPA and NPPB from human and rat had no effect on oocyte maturation, porcine NPPB (pNPPB) maintained oocyte meiotic arrest in a dose-dependent manner. Furthermore, pNPPB-mediated meiotic arrest and cGMP production could be completely blocked by the NPR2 inhibitor sphingosine-1-phosphate (S1P). Neither the NPR1 antagonist anantin or Npr1 knockout had an effect on pNPPB-mediated meiotic arrest. Thus, pNPPB can functionally maintain mouse-oocyte meiotic arrest by the receptor NPR2 of cumulus cells. These findings demonstrate that pNPPB may be used as a probe to identify the essential amino acid sequences for activation of NPR2.
    [Abstract] [Full Text] [Related] [New Search]