These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tuning the selectivity of ionic liquid stationary phases for enhanced separation of nonpolar analytes in kerosene using multidimensional gas chromatography.
    Author: Hantao LW, Najafi A, Zhang C, Augusto F, Anderson JL.
    Journal: Anal Chem; 2014 Apr 15; 86(8):3717-21. PubMed ID: 24617338.
    Abstract:
    In this study, a series of ionic liquids (ILs) are evaluated as stationary phases in comprehensive two-dimensional gas chromatography (GC × GC) for the separation of aliphatic hydrocarbons from kerosene. IL-based stationary phases were carefully designed to evaluate the role of cavity formation/dispersive interaction on the chromatographic retention of nonpolar analytes by GC × GC. The maximum allowable operating temperature (MAOT) of the IL-based columns was compared to that of commercial IL-based columns. Evaluation of the solvation characteristics of GC columns guided the selection of the best performing IL-based stationary phases for the resolution of aliphatic hydrocarbons, namely, trihexyl(tetradecyl)phosphonium tetrachloroferrate ([P66614][FeCl4]) and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate ([P66614][FAP]) ILs. The best performing [P66614][FeCl4] IL-based column exhibited a MAOT of 320 °C, higher than the commercial SUPELCOWAX 10 (MAOT of 280 °C) and commercial IL-based columns (MAOT up to 300 °C). The structurally tuned [P66614][FeCl4] IL stationary phase exhibited improved separation of aliphatic hydrocarbons by GC × GC compared to the commercial columns examined (e.g., OV-1701, SUPELCOWAX 10, SLB-IL60, SLB-IL100, and SLB-IL111).
    [Abstract] [Full Text] [Related] [New Search]