These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lipidomic analysis of polyunsaturated fatty acids and their oxygenated metabolites in plasma by solid-phase extraction followed by LC-MS. Author: Dasilva G, Pazos M, Gallardo JM, Rodríguez I, Cela R, Medina I. Journal: Anal Bioanal Chem; 2014 May; 406(12):2827-39. PubMed ID: 24618987. Abstract: The present work describes the development of a robust and sensitive targeted analysis platform for the simultaneous quantification in blood plasma of lipid oxygenated mediators and fatty acids using solid-phase extraction (SPE) and high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). The concurrent analysis of these lipid mediators is challenging because of their instability, differences in solubility, and the frequent occurrence of isobaric forms with similar fragmentation patterns. Results demonstrated that the reduction of SPE temperature to 4 °C is a critical parameter for preserving the hydroperoxy derivatives. Polymeric HLB cartridges increased 40-50 % ARA, EPA, and DHA sensitivity compared to C18 sorbent and also provided higher global performance for most hydroxides and other oxidation products. The proposed method for the two tested mass analyzers yields high sensitivity, good linearity, and reproducibility, with detection limits ranging 0.002-7 ng/mL and global recoveries as high as 85-112 %. However, the additional advantage of the linear ion trap (LIT) mass analyzer working in full scan product ion mode, compared to the triple quadrupole (QqQ) operating in multiple reaction monitoring (MRM), should be noted: the full scan product ion mode provides the full fragmentation spectra of compounds that allowed the discrimination of coeluting isomers and false positive identifications without additional chromatography development. The proposed lipidomic procedure demonstrates a confident, simple, and sensitive method to profile in plasma a wide range of lipid eicosanoid and docosanoid mediators, including innovatively the analysis of hydroperoxy congeners and nonoxidized PUFA precursors.[Abstract] [Full Text] [Related] [New Search]