These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Translocation of protein kinase C δ contributes to the moderately high glucose-, but not hypoxia-induced proliferation in primary cultured human retinal endothelial cells. Author: Liu ZC, Yu EH, Liu W, Liu XC, Tang SB, Zhu BH. Journal: Mol Med Rep; 2014 May; 9(5):1780-6. PubMed ID: 24626810. Abstract: Diabetic retinopathy is one of the most common complications in patients with diabetes and affects ~75% of them within 15 years of the onset of the disease. Activation of protein kinase C (PKC) is a key feature of diabetes mellitus and may be involved in the pathogenesis of diabetic retinopathy. The present study aimed to examine the translocation of protein kinase C (PKC) isoforms, which are triggered by high an moderately high glucose levels as well as hypoxic conditions. The underlying cell mechanisms of PKC translocation in primary cultured human retinal endothelial cells (HRECs) were also investigated. The expression levels of PKC isoforms were assessed using western blot analysis. Cell proliferation was determined using the MTT assay and DNA synthesis was assessed by bromodeoxyuridine incorporation. Translocation of PKC isoforms was examined by western blot analysis and immunofluorescence. The expression of PKC α, βI, βII, δ and ε was detected, while PKC ζ was not detected in HRECs. The results of the present study were consistent with the findings of a previous study by our group, reporting that moderately high glucose levels and hypoxia, but not high glucose levels, significantly increased cell proliferation. It was demonstrated that the PKC δ isoform was translocated from the cytosol to the membrane only under moderately high glucose conditions, while PKC α and ε isoforms were translocated from the cytosol to the membrane at high glucose conditions. In addition, PKC βI was translocated under all three conditions. Translocation of PKC βII was comparable among all groups. Furthermore, rottlerin, an inhibitor of PKC δ, blocked cell proliferation, which was induced by moderately high glucose levels, but not by hypoxia. Ro32-0432, an inhibitor of PKC α, βI and ε, did not significantly affect proliferation of HRECs in all treatment groups. In conclusion, the present study suggested that PKC α, βI, βII, δ and ε were expressed in primary cultured HRECs, whereas PKC ζ was not. Cell proliferation induced by moderately high glucose concentrations was associated with translocation of the PKC δ isoform; however, hypoxic conditions did not induce translocation.[Abstract] [Full Text] [Related] [New Search]