These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Placental and embryonic tissues exhibit aromatase activity in the viviparous lizard Niveoscincus metallicus. Author: Parsley LM, Wapstra E, Jones SM. Journal: Gen Comp Endocrinol; 2014 May 01; 200():61-6. PubMed ID: 24631640. Abstract: Aromatase is a key regulator of circulating testosterone (T) and 17-β-oestradiol (E2), two steroids which are critical to the development, maintenance and function of reproductive tissues. The role of aromatase in sexual differentiation in oviparous (egg-laying) reptiles is well understood, yet has never been explored in viviparous (live-bearing) reptiles. As a first step towards understanding the functions of aromatase during gestation in viviparous reptiles, we measured aromatase activity in maternal and embryonic tissues at three stages of gestation in the viviparous skink, Niveoscincus metallicus. Maternal ovaries and adrenals maintained high aromatase activity throughout gestation. During the early phases of embryonic development, placental aromatase activity was comparable to that in maternal ovaries, but declined significantly at progressive stages of gestation. Aromatase activity in the developing brains and gonads of embryos was comparable with measurements in oviparous reptiles. Aromatase activity in the developing brains peaked mid development, and declined to low levels in late stage embryos. Aromatase activity in the embryonic gonads was low at embryonic stage 29-34, but increased significantly at mid-development and then remained high in late stage embryos. We conclude that ovarian estrogen synthesis is supplemented by placental aromatase activity and that maternal adrenals provide an auxiliary source of sex steroid. The pattern of change in aromatase activity in embryonic brains and gonads suggests that brain aromatase is important during sexual differentiation, and that embryonic gonads are increasingly steroidogenic as development progresses. Our data indicate vital roles of aromatase in gestation and development in viviparous lizards.[Abstract] [Full Text] [Related] [New Search]