These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multiplex tandem mass spectrometry analysis of novel plasma lyso-Gb₃-related analogues in Fabry disease.
    Author: Boutin M, Auray-Blais C.
    Journal: Anal Chem; 2014 Apr 01; 86(7):3476-83. PubMed ID: 24634980.
    Abstract:
    Fabry disease is a multisystemic, X-linked lysosomal storage disorder caused by a deficit in α-galactosidase A enzyme activity leading to glycosphingolipid accumulation, mainly globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3). Recent metabolomic studies have led to the discovery of novel biomarkers related to lyso-Gb3 in plasma and urine. These biomarkers show modifications of the sphingosine moiety of the lyso-Gb3 molecule. The objectives of this study were to develop and validate a liquid chromatography-tandem mass spectrometry method for the relative quantification of novel plasma lyso-Gb3-related analogues, to evaluate their levels in plasma of 74 Fabry patients and 41 healthy controls and to correlate these results with patient gender, enzyme replacement therapy treatment, and lyso-Gb3 analogue levels previously measured in urine for the same patients. As expected, the concentrations of lyso-Gb3 and its related analogues in plasma are higher in Fabry males compared to Fabry females and higher for untreated males compared to treated males. The concentration of lyso-Gb3 and its related analogues in plasma decrease significantly after the beginning of enzyme replacement therapy (ERT) treatment and remain stable for 30 months of monitored therapy in a Fabry male. In plasma, lyso-Gb3 is significantly more abundant than its related analogues, which differs from urine where the majority of the lyso-Gb3 analogues are more increased than lyso-Gb3 itself. In contrast to urine, the relative distribution of lyso-Gb3 and its analogues in plasma is similar from one individual to another in the same group of Fabry patients, irrespective of ERT. This study revealed a large discrepancy between the relative abundance of lyso-Gb3 and its analogues in urine and plasma. Further studies will thus be needed to better understand the metabolic relationship between plasma and urine lyso-Gb3-related biomarkers.
    [Abstract] [Full Text] [Related] [New Search]