These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glucose transport in osteoblast-enriched bone explants: characterization and insulin regulation. Author: Hahn TJ, Westbrook SL, Sullivan TL, Goodman WG, Halstead LR. Journal: J Bone Miner Res; 1988 Jun; 3(3):359-65. PubMed ID: 2463740. Abstract: Insulin has potent effects on osteoblast function both in vivo and in vitro. In various insulin-sensitive tissues, stimulation of glucose transport and metabolism are hallmarks of insulin action, and have been postulated to play a role in insulin regulation of cellular function. However, insulin effects on glucose metabolism in osteoblast-like cells have not been demonstrated. Therefore we examined the in vitro effects of insulin on hexose uptake in an osteoblast-enriched rat bone explant preparation. Uniform 5-mm-diameter punch sections were obtained from the cartilage-free frontal portions of the calvaria of 3-day-old rats, and the periosteum was removed. The resulting sections contained a highly enriched population of osteoblast-like cells as determined by histologic criteria, elimination of calcitonin-stimulatable cAMP generation, and enhancement of PTH-stimulatable cAMP generation per microgram of DNA. Sections were incubated for 24 hr at 37 degrees C in BGJb medium and then transferred to modified glucose-free Krebs-Ringer bicarbonate buffer for 2-deoxy-D-glucose (2-DG) uptake studies. 3H-2-DG uptake was linear with time over 60 min, temperature sensitive, and inhibited by 5 mM phloridzin. Kinetic analysis of 2-DG uptake at 25 degrees C demonstrated a saturable transport mechanism with a Km of 2.2 mM, similar to that observed for 2-DG transport in other tissues. Studies of competitive inhibition by other sugars demonstrated a transport specificity for 2-DG that was comparable to that previously observed in fat and muscle cells.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]