These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Effects of soil compositions on sorption and desorption behavior of tetrachloroethylene in soil]. Author: Hu L, Qiu ZF, He L, Dou Y, Lü SG, Sui Q, Lin KF. Journal: Huan Jing Ke Xue; 2013 Dec; 34(12):4635-41. PubMed ID: 24640901. Abstract: Sorption and desorption play an important role in the transport and the fate of tetrachloroethylene (PCE) in soil. In order to examine influences of different soil compositions on PCE sorption-desorption, equilibrium batch experiments were carried out using four sorbents (natural soil with 2.23% total organic carbon (TOC), H2O2-treated soil, 375 degrees C-treated soil and 600 degrees C-treated soil) with different initial PCE liquid concentrations (c0). The effects of main parameters (TOC, soft carbon, hard carbon, minerals, c0) on PCE sorption-desorption were investigated. At 16 degrees C, when c0 was increased from 5 to 80 mg x L(-1), the results showed that sorption and desorption isotherms of PCE on four sorbents can be best described by the Freundlich model (r2 > 0.96). The sorption contribution rate of SOM was higher than 60% in natural soil, and hard carbon was the main influencing factor,while the desorption contribution rate of SOM was close to that of minerals in natural soil, and soft carbon accounted for more than 80% in the total desorption contribution rate of SOM. In addition, the higher the c0, the higher the sorption contribution rate of PCE in hard carbon and desorption contribution rate of PCE in soft carbon and minerals were. Moreover, desorption of PCE from four sorbents exhibited hysteresis, and hard carbon played a remarkable role in the hysteresis of natural soil.[Abstract] [Full Text] [Related] [New Search]