These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhanced aerobic granulation, stabilization, and nitrification in a continuous-flow bioreactor by inoculating biofilms.
    Author: Yang Y, Zhou D, Xu Z, Li A, Gao H, Hou D.
    Journal: Appl Microbiol Biotechnol; 2014 Jun; 98(12):5737-45. PubMed ID: 24643735.
    Abstract:
    In this study, the possibility of using backwashed biofilm as seed in an aerobic granular sludge continuous-flow airlift fluidized bed (CAFB) reactor was investigated. After the addition of the inoculated backwashed biofilm, the start-up period of this reactor fed with municipal wastewater was reduced to 25 days, and aerobic granulation and stabilization were enhanced. At steady state, the chemical oxygen demand (COD) removal efficiency and nitrification efficiency were as high as 80-90 and 60 %, respectively. The CAFB was operated continuously and totally for 90 days, and its performance was much more stable when compared with system inoculated with activated sludge. Microbial distribution analyzed by fluorescence in situ hybridization (FISH) showed that the nitrite-oxidizing bacteria (NOB) and ammonium-oxidizing bacteria (AOB) were compatible with heterotrophic bacteria and distributed evenly throughout the granules. Such unique population distribution might be attributed to the low COD level and abundant dissolved oxygen in the entire granule as simulated by the mathematic models. Moreover, scanning electron microscopy revealed broad holes in the granules, which might promote the mass transfer of the nutrients from the surface to the center and enable simultaneous COD removal and nitrification. In conclusion, backwashed biofilm is an alternative seed of the conventional flocculent activated sludge in the aerobic granular sludge system to enhance carbonaceous oxidization and nitrification.
    [Abstract] [Full Text] [Related] [New Search]