These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of fermentation on antioxidant properties and phytochemical composition of soy germ.
    Author: Sheih IC, Fang TJ, Wu TK, Chen RY.
    Journal: J Sci Food Agric; 2014 Dec; 94(15):3163-70. PubMed ID: 24652711.
    Abstract:
    BACKGROUND: Traditional soy-fermented foods, such as miso, douche, natto, and tempeh have been widely used as a dietary supplement in Asian countries, and numerous reports on their phenolics and antioxidant activities have been published. Soy germ contains 10-fold higher phenolics than whole soybean, hence using soy germ as fermentation substrate will be more efficient than whole soybean. RESULTS: Soy germ fermented with Aspergillus niger M46 resulted in a high-efficiency bio-transformation of phenolics and flavonoids to their metabolites, and a diverse secondary metabolic product was also found to response oxidation stress of fungal colonisation. Its antioxidant activity against hydroxyl radicals and superoxide radicals (IC50 = 0.8 and 6.15 µg mL(-1) , respectively) was about 205-fold and 47-fold higher than those of unfermented soy germ (IC50 = 164.0 and 290.48 µg mL(-1) ), respectively. These results were similar to those observed for Trolox, and more active than those of BHT and hesperidin. The β-glucosidase and α-amylase produced during fermentation were mainly responsible for mobilisation of the phenolics. CONCLUSION: Our results demonstrate that fermented soy germ has the potential to be a good dietary supplement for prevention of oxidative stress-related diseases, and the solid-state bioprocessing strategy could be an innovative approach to enhance the antioxidant activity of soy germ.
    [Abstract] [Full Text] [Related] [New Search]