These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation of topoisomerase II catalytic activity by DNA minor groove binding agents distamycin, Hoechst 33258, and 4',6-diamidine-2-phenylindole.
    Author: Woynarowski JM, McHugh M, Sigmund RD, Beerman TA.
    Journal: Mol Pharmacol; 1989 Feb; 35(2):177-82. PubMed ID: 2465485.
    Abstract:
    The effects of distamycin, Hoechst 33258, and 4',6-diamidine-2-phenylindole (DAPI) on the catalytic activity of topoisomerase II from L1210 cells were determined. These compounds were used as model agents capable of AT-specific binding in the minor groove of DNA while producing no profound long-range alterations to the DNA structure. Two types of reactions catalyzed by topoisomerase II were examined, relaxation of supercoiled DNA and decatenation of highly catenated DNA. Distamycin at low concentrations (0.2-2 microM) substantially stimulated relaxation of supercoiled pBR322 DNA. Higher drug levels (25-50 microM) resulted in a potent inhibition of relaxation. At the stimulatory concentrations of distamycin, only completely relaxed reaction products were observed, as in the absence of the drug. The onset of inhibition (caused by 5-10 microM distamycin) was accompanied by the appearance of partially relaxed intermediates. Similar inhibition of relaxation was observed for Hoechst 33258 and DAPI but, unlike distamycin, these agents produced only marginal stimulation of relaxation when added in low noninhibitory concentrations. Another reaction of topoisomerase II, decatenation of catenated kinetoplast DNA, was also inhibited by distamycin, Hoechst 33258, and DAPI at concentrations similar to those inhibiting the relaxation reaction. This study demonstrates that agents binding to the minor groove of DNA represent a new class of drugs interfering with topoisomerase II and provides possibilities for modulation of this important enzyme.
    [Abstract] [Full Text] [Related] [New Search]