These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Calcination-free micropatterning of rare-earth-ion-doped nanoparticle films on wettability-patterned surfaces of plastic sheets.
    Author: Watanabe S, Hamada Y, Hyodo H, Soga K, Matsumoto M.
    Journal: J Colloid Interface Sci; 2014 May 15; 422():58-64. PubMed ID: 24655829.
    Abstract:
    We demonstrate a patterning technique of rare-earth-ion-doped (RE) nanoparticle films directly on wettability-patterned surfaces fabricated on plastic sheets in one step. Self-assembled monolayers consisting of silane-coupling agent with hydrophobic groups were fabricated on plastic sheets. UV-ozone treatments were performed through a metal mask to selectively remove the self-assembled monolayers in a patterned manner, resulting in the formation of wettability-patterned surfaces on plastic sheets. Using a water dispersion of Er(3+) and Yb(3+)-codoped Y2O3 nanoparticles at a diameter of 100 nm, RE-nanoparticle films were fabricated on the wettability-patterned surfaces by a dip-coating technique. By adjusting the concentration of RE-nanoparticle dispersion, withdrawal speed, and withdrawal angle, amount of RE-nanoparticles, we were able to control the structures of the RE-nanoparticle films. Fluorescence microscope observations demonstrate that visible upconversion luminescence and near-infrared fluorescence were emitted from the RE-nanoparticle films on the wettability-patterned surfaces. This technique allows for the fabrication of flexible emitting devices with long-operating life time with minimized material consumption and few fabrication steps, and for the application to sensors, emitting devices, and displays in electronics, photonics, and bionics in the future.
    [Abstract] [Full Text] [Related] [New Search]