These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Shedding light onto nutrient responses of arbuscular mycorrhizal plants: nutrient interactions may lead to unpredicted outcomes of the symbiosis. Author: Corrêa A, Cruz C, Pérez-Tienda J, Ferrol N. Journal: Plant Sci; 2014 May; 221-222():29-41. PubMed ID: 24656333. Abstract: The role and importance of arbuscular mycorrhizae (AM) in plant nitrogen (N) nutrition is uncertain. We propose that this be clarified by using more integrative experimental designs, with the use of a gradient of N supply and the quantification of an extensive array of plant nutrient contents. Using such an experimental design, we investigated AM effects on plant N nutrition, whether the mycorrhizal N response (MNR) determines the mycorrhizal growth response (MGR), and how MNR influences plants' C economy. Oryza sativa plants were inoculated with Rhizophagus irregularis or Funneliformis mossae. AM effects were studied along a gradient of N supplies. Biomass, photosynthesis, nutrient and starch contents, mycorrhizal colonization and OsPT11 gene expression were measured. C investment in fungal growth was estimated. Results showed that, in rice, MGR was dependent on AM nutrient uptake effects, namely on the synergy between N and Zn, and not on C expenditure. The supply of C to the fungus was dependent on the plant's nutrient demand, indicated by high shoot C/N or low %N. We conclude that one of the real reasons for the negative MGR of rice, Zn deficiency of AMF plants, would have remained hidden without an experimental design allowing the observation of plants' response to AM along gradients of nutrient concentrations. Adopting more integrative and comprehensive experimental approaches in mycorrhizal studies seems therefore essential if we are to achieve a true understanding of AM function, namely of the mechanisms of C/N exchange regulation in AM.[Abstract] [Full Text] [Related] [New Search]