These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dose-dependent retinal changes following sodium iodate administration: application of spectral-domain optical coherence tomography for monitoring of retinal injury and endogenous regeneration. Author: Machalińska A, Lejkowska R, Duchnik M, Kawa M, Rogińska D, Wiszniewska B, Machaliński B. Journal: Curr Eye Res; 2014 Oct; 39(10):1033-41. PubMed ID: 24661221. Abstract: BACKGROUND: The purpose of this study was to demonstrate the progression of acute retinal injury by correlating histological sections with in vivo spectral-domain optical coherence tomography (SD-OCT) images. METHODS: Male C57BL/6 mice were treated intravenously with two different sodium iodate (NaIO3) doses (35 mg/kg or 15 mg/kg). In vivo SD-OCT was performed up to 3 months post-injury. Ex vivo retinal histology, TUNEL and IsolectinB4 immunostaining were also conducted. Quantitative comparison of histopathological images and SD-OCT images was performed. RESULTS: SD-OCT examination revealed that administration of 35 mg/kg NaIO3 was associated with progressive and irreversible retinal degeneration. On day 3 post-injury, we found numerous apoptotic cells in the outer nuclear layer (ONL) that strongly corresponded to hyper-reflective areas in the SD-OCT images. At 7 d post-injury, SD-OCT images showed irregular-shaped patterns of hyper-reflectivity in the retinal pigment epithelium (RPE) that corresponded with the accumulation of macrophages phagocytosing melanin granules and cell debris. Additionally, we documented hyper-reflective opacities in the vitreous that were most numerous at 7 d. At 3 months post-injury, the neurosensory retina was significantly thinner, predominantly due to progressive photoreceptor (PR) loss. In contrast, administration of 15 mg/kg NaIO3 did not induce hyper-reflectivity of ONL in SD-OCT images, which indicates a lack of massive PR cell death. At 3 months post-injury, SD-OCT images showed the complete restoration of outer retina lamination and restoration of hyper-reflective structural bands. Histological assessment of retinas acquired after the last SD-OCT imaging session revealed complete regeneration of the RPE and considerable improvement of PR architecture. CONCLUSIONS: Our findings showed the high level of effectiveness of SD-OCT imaging for monitoring dynamic changes in retinal morphology following acute retinal injury. Moreover, we demonstrated for the first time that SD-OCT can be used to non-invasively detect regeneration in the damaged retina.[Abstract] [Full Text] [Related] [New Search]