These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Developmental changes in the protective effect of exogenous brain-derived neurotrophic factor and neurotrophin-3 against ototoxic drugs in cultured rat vestibular ganglion neurons. Author: Inoue A, Iwasaki S, Fujimoto C, Nakajima T, Yamasoba T. Journal: Cell Tissue Res; 2014 May; 356(2):299-308. PubMed ID: 24664118. Abstract: We examine developmental changes in the responsiveness of rat vestibular ganglion neurons (VGNs) to two neurotrophic factors (NTFs), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) and investigate the protective effects of these NTFs against ototoxic drugs during postnatal development in dissociated cultures. VGNs were obtained from rats on postnatal days (P) 1, 3, 7 and 14. BDNF facilitated neuronal survival as well as neurite sprouting of VGNs obtained from younger rats (P1 and P3), whereas these effects were not observed in older rats (P7 and P14). BDNF was also effective in facilitating neurite extension in VGNs at each of the postnatal ages. NT-3 also facilitated neuronal survival and neurite extension of VGNs from younger rats but these effects were significantly smaller than those of BDNF (p < 0.05). The protective effects of BDNF and NT-3 against ototoxic drugs, gentamicin and cisplatin, were also age-dependent: they were effective for neuronal survival, neurite sprouting and neurite extension in VGNs from younger rats, whereas these effects tended to disappear in VGNs from older rats. Analysis of the changes in the expression of the receptors of NTFs revealed that expression of TrkB and TrkC proteins and their mRNA did not change during the developmental period, whereas expression of p75(NTR) protein was down-regulated together with that of p75(NTR) mRNA during the developmental period. Developmental changes in the responsiveness to exogenous NTFs in VGNs, which is not caused by the changes of their receptors but probably caused by changes in the intracellular signaling pathways, should be taken into consideration in the prevention of neuronal degeneration caused by ototoxic drugs.[Abstract] [Full Text] [Related] [New Search]