These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Schistosoma haematobium hotspots in south Nyanza, western Kenya: prevalence, distribution and co-endemicity with Schistosoma mansoni and soil-transmitted helminths.
    Author: Sang HC, Muchiri G, Ombok M, Odiere MR, Mwinzi PN.
    Journal: Parasit Vectors; 2014 Mar 25; 7():125. PubMed ID: 24667030.
    Abstract:
    BACKGROUND: Schistosomiasis studies in western Kenya have mainly focused on the intestinal form, with evidence of urinary schistosomiasis remaining anecdotal. Detailed disease mapping has been carried out predominantly along the shores of Lake Victoria, but there is a paucity of information on intestinal and urinary schistosomiasis in inland sites. METHODS: This cross-sectional survey of 3,487 children aged 7-18 years from 95 schools in south Nyanza, western Kenya determined the prevalence, infection intensity, and geographical distribution of Schistosoma haematobium, evaluating its co-endemicity with Schistosoma mansoni and soil-transmitted helminths (STHs). Helminth eggs were analyzed from single urine (for S. haematobium) and stool (for S. mansoni and STHs) samples by centrifugation and Kato-Katz, respectively. Hematuria was used as a proxy indicator for S. haematobium. Schools and water bodies (ponds, water-points, streams, dams and rivers) were mapped using Geographical Information System and prevalence maps obtained using ArcView GIS Software. RESULTS: S. haematobium infections with an overall prevalence of 9.3% (95% CI = 8.4-10.2%) were mostly prevalent in Rachuonyo, 22.4% (95% CI = 19.2-25.9% and 19.7 eggs/10 ml) and Migori, 10.7% (95% CI = 9.2-12.3% and 29.5 eggs/10 ml) districts, particularly around Kayuka pond and Ongoche river respectively. Overall infections correlated with hematuria (r = 0.9, P < 0.0001) and were more likely in boys (P < 0.0001, OR = 0.624). S. mansoni infections with an overall prevalence of 13% (95% CI =11.9-14.1%) were majorly confined along the shores of Lake Victoria. STH infections were homogenously distributed with A. lumbricoides occurring in 5.4% (95% CI = 4.7-6.3%) and T. trichiura in 2.8% (95% CI = 2.3-3.4%) of the children. Although S. mansoni infections were more co-endemic with S. haematobium, only A. lumbricoides infections were positively associated with S. haematobium (P = 0.0295, OR = 0.4585). Overall prevalence of S. haematobium monoinfection was 7.2% (95% CI = 6.4-8%), S. mansoni monoinfection was 12.3% (95% CI = 10.4-12.5%), and S. haematobium-S. mansoni coinfection was 1.2% (95% CI = 0.9-1.6%). There was no significant difference in infection intensity between mono and coinfections. CONCLUSION: Prevalence distribution maps obtained are important for planning and implementing disease control programs in these areas.
    [Abstract] [Full Text] [Related] [New Search]