These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of duloxetine and WAY100635 on pudendal inhibition of bladder overactivity in cats. Author: Reese J, Xiao Z, Schwen Z, Matsuta Y, Shen B, Wang J, Roppolo JR, de Groat WC, Tai C. Journal: J Pharmacol Exp Ther; 2014 Jun; 349(3):402-7. PubMed ID: 24667547. Abstract: This study was aimed at determining the effect of duloxetine (a serotonin-norepinephrine reuptake inhibitor) on pudendal inhibition of bladder overactivity. Cystometrograms were performed on 15 cats under α-chloralose anesthesia by infusing saline and then 0.25% acetic acid (AA) to induce bladder overactivity. To inhibit bladder overactivity, pudendal nerve stimulation (PNS) at 5 Hz was applied to the right pudendal nerve at two and four times the threshold (T) intensity for inducing anal twitch. Duloxetine (0.03-3 mg/kg) was administered intravenously to determine the effect on PNS inhibition. AA irritation significantly (P < 0.01) reduced bladder capacity to 27.9 ± 4.6% of saline control capacity. PNS alone at both 2T and 4T significantly (P < 0.01) inhibited bladder overactivity and increased bladder capacity to 83.6 ± 7.6% and 87.5 ± 7.7% of saline control, respectively. Duloxetine at low doses (0.03-0.3 mg/kg) caused a significant reduction in PNS inhibition without changing bladder capacity. However, at high doses (1-3 mg/kg) duloxetine significantly increased bladder capacity but still failed to enhance PNS inhibition. WAY100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridyl)cyclohexanecarboxamide; a 5-HT1A receptor antagonist, 0.5-1 mg/kg i.v.) reversed the suppressive effect of duloxetine on PNS inhibition and significantly (P < 0.05) increased the inhibitory effect of duloxetine on bladder overactivity but did not enhance the effect of PNS. These results indicate that activation of 5-HT1A autoreceptors on the serotonergic neurons in the raphe nucleus may suppress duloxetine and PNS inhibition, suggesting that the coadministration of a 5-HT1A antagonist drug might be useful in enhancing the efficacy of duloxetine alone and/or the additive effect of PNS-duloxetine combination for the treatment of overactive bladder symptoms.[Abstract] [Full Text] [Related] [New Search]