These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Novel frame-shift mutations of GLI3 gene in non-syndromic postaxial polydactyly patients.
    Author: Wang Z, Wang J, Li Y, Geng J, Fu Q, Xu Y, Shen Y.
    Journal: Clin Chim Acta; 2014 Jun 10; 433():195-9. PubMed ID: 24667698.
    Abstract:
    Polydactyly is a common congenital limb deformity. This anomaly may occur in isolation (non-syndromic) or as part of a syndrome. The glioma-associated oncogene family zinc finger 3 (GLI3) is known to be associated with both syndromic and non-syndromic polydactyly. GLI3 plays a predominant role in the pathogenesis of syndromic polydactyly: mutations have been identified in 68% of patients with Greig cephalopolysyndactyly syndrome and 91% of patients with Pallister-Hall syndrome. The knowledge regarding the contribution of GLI3 in non-syndromic polydactyly is currently very limited. In this study, we assembled a cohort of individuals of Chinese ethnicity with non-syndromic postaxial polydactyly. We presented the clinical features and molecular evaluations of 19 probands. GLI3 mutations were identified in 15.8% of probands (3/19) including two novel frame-shift mutations c.3855dupC (p.Met1286HisfsTer18) and c.4141delA (p.Arg1381GlyfsTer38) detected in sporadic cases and one previously reported nonsense mutation (c.1927C>T/p.Arg643Ter) in a familial case. Of note, GLI3 mutations were exclusively detected in patients with bilateral polydactyly affecting both hands and feet. Three out of five (60%) probands with bilateral polydactyly on both hands and feet carried pathogenic mutations in GLI3. Our study demonstrated the role of GLI3 in a significant fraction of patients with non-syndromic bilateral polydactyly affecting both hands and feet.
    [Abstract] [Full Text] [Related] [New Search]