These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tryptic digestion coupled with ambient desorption electrospray ionization and liquid extraction surface analysis mass spectrometry enabling identification of skeletal muscle proteins in mixtures and distinguishing between beef, pork, horse, chicken, and turkey meat. Author: Montowska M, Rao W, Alexander MR, Tucker GA, Barrett DA. Journal: Anal Chem; 2014 May 06; 86(9):4479-87. PubMed ID: 24673366. Abstract: The use of ambient desorption electrospray ionization mass spectrometry (DESI-MS) and liquid extraction surface analysis mass spectrometry (LESA-MS) is explored for the first time to analyze skeletal muscle proteins obtained from a mixture of standard proteins and raw meat. Single proteins and mixtures of up to five proteins (myoglobin, troponin C, actin, bovine serum albumin (BSA), tropomyosin) were deposited onto a polymer surface, followed by in situ tryptic digestion and comparative analysis using DESI-MS and LESA-MS using tandem electrospray MS. Peptide peaks specific to individual proteins were readily distinguishable with good signal-to-noise ratio in the five-component mixture. LESA-MS gave a more stable analysis and greater sensitivity compared with DESI-MS. Meat tryptic digests were subjected to peptidomics analysis by DESI-MS and LESA-MS. Bovine, horse, pig, chicken, and turkey muscle digests were clearly discriminated using multivariate data analysis (MVA) of the peptidomic data sets. The most abundant skeletal muscle proteins were identified and correctly classified according to the species following MS/MS analysis. The study shows, for the first time, that ambient ionization techniques such as DESI-MS and LESA-MS have great potential for species-specific analysis and differentiation of skeletal muscle proteins by direct surface desorption.[Abstract] [Full Text] [Related] [New Search]