These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evidence that prejunctional adenosine receptors regulating acetylcholine release from rat hippocampal slices are linked to an N-ethylmaleimide-sensitive G-protein, but not to adenylate cyclase or dihydropyridine-sensitive Ca2+-channels.
    Author: Dunér-Engström M, Fredholm BB.
    Journal: Acta Physiol Scand; 1988 Sep; 134(1):119-26. PubMed ID: 2467517.
    Abstract:
    Electrically evoked [3H]acetylcholine ([3H]ACh) release from slices of the rat hippocampus was reduced in a dose-dependent manner by the adenosine A1-receptor agonist R-phenylisopropyladenosine (R-PIA) in the concentration range 0.1-10 microM. The maximal effect was observed with 1 microM R-PIA. Treatment with N-ethylmaleimide (NEM, 100 microM, 10 min), which inactivates nucleotide-binding proteins (G-proteins), caused a slight increase in the basal overflow (0.17 +/- 0.01% v. 0.10 +/- 0.003% in the control slices), but did not affect stimulated release (0.73 +/- 0.05% vs. 0.74 +/- 0.03% in the control slices). N-ethylmaleimide pretreatment significantly reduced the prejunctional inhibitory effect of R-PIA on [3H]ACh release in a non-competitive manner. The S2/S1 ratio was 0.92 +/- 0.03 in controls and was reduced to 0.32 +/- 0.02 by 1 microM R-PIA in the control slices and to 0.57 +/- 0.03 after NEM pretreatment. Stimulation of cyclic AMP-accumulation by forskolin (1 microM) and rolipram (30 microM) before the second stimulation (S2) enhanced the S2/S1 ratio by about 30% to 1.26 +/- 0.12, but did not reduce the inhibitory effect of R-PIA (1 microM). The Ca2+-channel agonist Bay K 86(44) (1 microM), a concentration that increases K+-evoked noradrenaline release, did not affect the basal or electrically evoked [3H]ACh overflow, or the prejunctional effects of R-PIA (0.1 and 1 microM) on [3H]ACh release. Our results suggest that the presynaptic inhibitory effects of A1-receptor agonists on [3H]ACh release are exerted via a nucleotide-binding protein that can be inhibited by NEM.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]