These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Complex relationship between BOLD-fMRI and electrophysiological signals in different olfactory bulb layers.
    Author: Li B, Gong L, Wu R, Li A, Xu F.
    Journal: Neuroimage; 2014 Jul 15; 95():29-38. PubMed ID: 24675646.
    Abstract:
    Blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI), one of the most powerful technologies in neuroscience, measures neural activity indirectly. Therefore, systematic correlation of BOLD signals with other neural activity measurements is critical to understanding and then using the technology. Numerous studies have revealed that the BOLD signal is determined by many factors and is better correlated with local field potentials (LFP) than single/multiple unit firing. The relationship between BOLD and LFP signals under higher spatial resolution is complex and remains unclear. Here, changes of BOLD and LFP signals in the glomerular (GL), mitral cell (MCL), and granular cell layers (GCL) of the olfactory bulb were evoked by odor stimulation and sequentially acquired using high-resolution fMRI and electrode array. The experimental results revealed a rather complex relationship between BOLD and LFP signals. Both signal modalities were increased layer-dependently by odor stimulation, but the orders of signal intensity were significantly different: GL>MCL>GCL and GCL>GL>MCL for BOLD and LFP, respectively. During odor stimulation, the temporal features of LFPs were similar for a given band in different layers, but different for different frequency bands in a given layer. The BOLD and LFP signals in the low gamma frequency band correlated the best. This study provides new evidence for the consistency between structure and function in understanding the neurophysiological basis of BOLD signals, but also reminds that caution must be taken in interpreting of BOLD signals in regard to neural activity.
    [Abstract] [Full Text] [Related] [New Search]