These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Efficient visible upconversion luminescence in Er3+ and Er3+/Yb3+ co-doped Y2O3 phosphors obtained by solution combustion reaction. Author: Singh V, Haritha P, Venkatramu V, Kim SH. Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2014 May 21; 126():306-11. PubMed ID: 24682034. Abstract: Combustion derived Er(3+) -doped Y2O3 and Er(3+)/Yb(3+)co-doped Y2O3 powders have been characterized by X-ray diffraction, energy dispersive X-ray analysis, Fourier transform infrared spectroscopy and laser excited spectroscopy. Formation of Y2O3 phosphor was confirmed by X-ray diffraction and energy dispersive X-ray analysis. The vibrational properties of Y2O3 powder was studied by Fourier transform infrared spectroscopy. The luminescence spectra of Er(3+) -doped and Er(3+)/Yb(3+) co-doped Y2O3 powders were studied under 379nm excitation. The strong up-conversion luminescence for Er(3+) -doped and Er(3+)/Yb(3+) co-doped Y2O3 powders have been observed under 978nm laser excitation. The effect of Yb(3+) addition on optical and luminescence properties of Er(3+):Y2O3 powders were studied. The ratio of red to green intensity has been enhanced when Er(3+) -doped Y2O3 is co-doped with Yb(3+) ions. The effect of co-doping of Yb(3+) ions on the visible luminescence intensity of Er(3+) has been studied and the mechanism responsible for the variation in the green and red intensity is discussed.[Abstract] [Full Text] [Related] [New Search]