These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Impact of the configuration of a chiral, activating carrier on the enantioselectivity of entrapped lipase from Candida rugosa in cyclohexane. Author: Tobis J, Tiller JC. Journal: Biotechnol Lett; 2014 Aug; 36(8):1661-7. PubMed ID: 24682791. Abstract: Lipase from Candida rugosa was loaded into an amphiphilic polymer co-network (APCN) composed of the chiral poly[(R)-N-(1-hydroxybutan-2-yl) acrylamide] [P-(R)-HBA] and P-(S)-HBA, respectively, linked by poly(dimethylsiloxane). The nanophase-separated amphiphilic morphology affords a 38,000-fold activation of the enzyme in the esterification of 1-phenylethanol with vinyl acetate. Further, the enantioselectivity of the entrapped lipase was influenced by the configuration of the chiral, hydrophilic polymer matrix. While the APCN with the (S)-configuration of the APCN affords 5.4 faster conversion of the (R)-phenylethanol compared to the respective (S)-enantiomer, the (R)-APCN allows an only a 2.8 faster conversion of the (R)-enantiomer of the alcohol. Permeation-experiments reveal that the enantioselectivity of the reaction is at least partially caused by specific interactions between the substrates and the APCN.[Abstract] [Full Text] [Related] [New Search]