These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Down-regulated expression of acid-sensing ion channel 1a in cortical lesions of patients with focal cortical dysplasia. Author: Guo W, Chen X, He JJ, Wei YJ, Zang ZL, Liu SY, Yang H, Zhang CQ. Journal: J Mol Neurosci; 2014 Jun; 53(2):176-82. PubMed ID: 24682892. Abstract: Focal cortical dysplasia (FCD) represents a well-recognized cause of medically intractable epilepsy. Previous studies have indicated that seizures can reduce brain pH and then eliminate seizure discharges. Acid-sensing ion channels (ASICs) are H(+)-gated cation channels that are widely expressed in the central and peripheral nervous systems. To understand the potential roles of ASIC1a in the epileptogenesis of FCD, we investigated the expression and distribution patterns of ASIC1a in surgical specimens from patients with FCD and age-matched normal cortices (CTX). Decreased ASIC1a messenger RNA (mRNA) and protein expression were detected in FCD compared with CTX. Moreover, the expression of ASIC1a was significantly lower in FCD type II than FCD type I. Immunohistochemistry results indicated that the overall immunoreactivity of the ASIC1a staining was diminished in the dysplastic cortices of FCD compared to the CTX samples. In FCD, ASIC1a immunoreactivity was mainly observed in reactive astrocytes and a minority of malformed cells, including hypertrophic neurons, dysmorphic neurons, and balloon cells. Confocal analysis demonstrated that most malformed cells expressing ASIC1a were co-labeled with neuronal rather than astrocytic markers, indicating a neuronal lineage. In conclusion, the downregulation and altered cellular distribution of ASIC1a in FCD suggest that ASIC1a may potentially contribute to the epileptogenesis of FCD.[Abstract] [Full Text] [Related] [New Search]