These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stimulus-coupled taurine efflux from cerebellar neuronal cultures: on the roles of Ca++ and Na+. Author: Philibert RA, Rogers KL, Dutton GR. Journal: J Neurosci Res; 1989 Feb; 22(2):167-71. PubMed ID: 2468785. Abstract: Primary cultures of cerebellar neurons obtained from 7-9-day-old rats and grown 7-9 days in vitro (DIV) were used to study the effects of Na+ and Ca++ on K+-evoked taurine release. These cultures, made up largely of granule neurons (90%) and inhibitory interneurons (5-7%), produced a dose-dependent, depolarization-evoked taurine release that was Ca++-dependent at 40 mM K+, and Ca++-independent at K+ concentrations above 40 mM. The dihydropyridine Ca++ channel agonist BAY K 8644 (1 microM) augmented 30 mM K+-evoked release, while the antagonist nifedipine (5 microM) abolished both the BAY K 8644- and K+-enhanced release. Depolarization with the Na+ channel agonist veratridine (50 microM) stimulated taurine efflux, which was completely blocked by pretreatment with tetrodotoxin (2 microM). However, 50 mM K+-evoked taurine release was not affected by tetrodotoxin pretreatment. Substitution of choline Cl for NaCl partially antagonized 50 mM K+-evoked release, and by itself, the Na+ ionophore monensin (50 microM) stimulated release. These results suggest that both K+-evoked and basal taurine release from primary cerebellar neuronal cultures are sensitive to the levels of both intracellular and extracellular Na+ and Ca++. In contrast to previous findings using cerebellar astrocytes, neuronal L-type Ca++ channels, but not voltage-dependent Na+ channels, also appear to be necessary. The implications of these results on taurine's status as a putative neurotransmitter are discussed.[Abstract] [Full Text] [Related] [New Search]