These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular mechanisms of quinolone, macrolide, and tetracycline resistance among Campylobacter isolates from initial stages of broiler production. Author: Pérez-Boto D, Herrera-León S, García-Peña FJ, Abad-Moreno JC, Echeita MA. Journal: Avian Pathol; 2014; 43(2):176-82. PubMed ID: 24689432. Abstract: The aim of this study was to investigate the resistance mechanisms of quinolones, macrolides and tetracycline in campylobacter isolates from grandparent and parent broiler breeders in Spain. Twenty-six isolates were investigated for quinolone resistance, three isolates for macrolide resistance and 39 for tetracycline resistance. All of the quinolone-resistant isolates possessed the mutation Thr86Ile in the quinolone resistance-determining region of gyrA and one isolate possessed the mutation Pro104Ser. Only one Campylobacter coli population (defined by restriction fragment length polymorphism-polymerase chain reaction of flaA and pulsed field gel electrophoresis) was resistant to erythromycin, and the mutation A2075G (23S rDNA) was responsible for macrolide resistance. The tetO gene was found in all of the tetracycline-resistant isolates. Twenty-two out of the 39 isolates investigated by Southern blot possessed chromosomic location of tetO and 17 were located on plasmids. Most of the plasmids with tetO were of around 60 kb and conjugation was demonstrated in a selection of them. In conclusion, we showed that Thr86Ile is highly prevalent in quinolone-resistant isolates as well as mutation A2075G in macrolide-resistant isolates of poultry origin. More variability was found for tetO. The possibility of horizontal transmission of tetO among campylobacter isolates is also an issue of concern in public health.[Abstract] [Full Text] [Related] [New Search]