These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of 32 full-length NAC transcription factors in ramie (Boehmeria nivea L. Gaud) and characterization of the expression pattern of these genes.
    Author: Liu T, Zhu S, Tang Q, Tang S.
    Journal: Mol Genet Genomics; 2014 Aug; 289(4):675-84. PubMed ID: 24691727.
    Abstract:
    NAM, ATAF, and CUC (NAC) genes are plant-specific transcription factors (TFs) that play key roles in plant growth, development, and stress tolerance. To date, none of the ramie NAC (BnNAC) genes had been identified, even though ramie is one of the most important natural fiber crops. In order to mine the BnNAC TFs and identify their potential function, the search for BnNAC genes against two pools of unigenes de novo assembled from the RNA-seq in our two previous studies was performed, and a total of 32 full-length BnNAC genes were identified in this study. Forty-seven function-known NAC proteins published in other species, in concert with these 32 BnNAC proteins were subjected to phylogenetic analysis, and the result showed that all the 79 NAC proteins can be divided into eight groups (NAC-I-VIII). Among the 32 BnNAC genes, 24, 2, and 1 gene showed higher expression in stem xylem, leaf, and flower, respectively. Furthermore, the expression of 14, 11 and 4 BnNAC genes was regulated by drought, cadmium stress, and infection by root lesion nematode, respectively. Interestingly, there were five BnNAC TFs which showed high homology with the NAC TFs of other species involved in regulating the secondary wall synthesis, and their expressions were not regulated by drought and cadmium stress. These results suggested that the BnNAC family might have a functional diversity. The identification of these 32 full-length BnNAC genes and the characterization of their expression pattern provide a basis for future clarification of their functions in ramie growth and development.
    [Abstract] [Full Text] [Related] [New Search]