These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential extraction of endogenous and exogenous 25-OH-vitamin D from serum makes the accurate quantification in liquid chromatography-tandem mass spectrometry assays challenging.
    Author: Lankes U, Elder PA, Lewis JG, George P.
    Journal: Ann Clin Biochem; 2015 Jan; 52(Pt 1):151-60. PubMed ID: 24714680.
    Abstract:
    BACKGROUND: Extraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis is the method of choice when it comes to the accurate quantification of 25-OH-vitamin D in blood samples. It is generally assumed that the addition of exogenous internal standard allows for the determination of the endogenous analyte concentration. In this study we investigated the extraction properties of endogenous and exogenous 25-OH-vitamin D. METHODS: Eight samples were used for the evaluation of the extraction procedure and 59 patients' samples for a method comparison. The methanol-to-sample ratio (v/v) and the sample-to-hexane ratio (v/v) were varied and the LC-MS/MS signals of endogenous 25-OH-vitamin D3, spiked 25-OH-vitamin D2 and internal standard of the extracts recorded. The optimized 'in-house' LC-MS/MS assay was compared to two automated chemiluminescence immunoassays from DiaSorin and Abbott. RESULTS: Mathematical analysis of the data revealed a differential extraction of endogenous 25-OH-vitamin D3, spiked 25-OH-vitamin D2 and non-equilibrated internal standard. Exogenous 25-OH-vitamin D can be measured accurately if a definite methanol-to-sample ratio is used. Endogenous 25-OH-vitamin D is affected by critical quantification issues due to a differential slope in the extraction profile. The actual 25-OH-vitamin D concentration can be one-third above the measured extractable concentration. Results confirm that the 'in-house' LC-MS/MS assay provides reproducible 25-OH-vitamin D results. CONCLUSIONS: Discordant concentrations of 25-OH-vitamin D from LC-MS/MS assays can be caused by selection of suboptimal extraction conditions. Furthermore, a different sample pretreatment or solvent extraction system may result in a different dissociation and extraction yield of endogenous 25-OH-vitamin D and therefore contribute to variations of LC-MS/MS results.
    [Abstract] [Full Text] [Related] [New Search]