These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Beta-adrenergic modulation of cardiac ion channels. Differential temperature sensitivity of potassium and calcium currents.
    Author: Walsh KB, Begenisich TB, Kass RS.
    Journal: J Gen Physiol; 1989 May; 93(5):841-54. PubMed ID: 2472462.
    Abstract:
    beta-Adrenergic stimulation of ventricular heart cells results in the enhancement of two important ion currents that regulate the plateau phase of the action potential: the delayed rectifier potassium channel current (IK) and L-type calcium channel current (ICa). The temperature dependence of beta-adrenergic modulation of these two currents was examined in patch-clamped guinea pig ventricular myocytes at various steps in the beta-receptor/cyclic AMP-dependent protein kinase pathway. External applications of isoproterenol and forskolin were used to activate the beta-receptor and the enzyme adenylate cyclase, respectively. Internal dialysis of cyclic 3',5'-adenosine monophosphate (cAMP) or the catalytic subunit of cAMP-dependent protein kinase (CS), as well as the external addition of 8-chlorphenylthio cAMP (CPT-cAMP) was applied to increase intracellular levels of cAMP and CS. Isoproterenol-mediated increases in IK, but not ICa, were found to be very temperature dependent over the range of 20-37 degrees C. At room temperature (20-22 degrees C) isoproterenol produced a large (threefold) enhancement of ICa but had no effect on IK. In contrast, at warmer temperatures (30-37 degrees C) both currents increased in the presence of this agonist and the kinetics of IK were slowed at -30 mV. A similar temperature sensitivity also existed after exposure to forskolin, CPT-cAMP, cAMP, and CS, suggesting that this temperature sensitivity of IK may arise at the channel protein level. Modulation of IK during each of these interventions was accompanied by a slowing in IK kinetics. Thus, regulation of cardiac potassium channels but not calcium channels involves a temperature-dependent step that occurs after activation of the catalytic subunit of cAMP-dependent protein kinase.
    [Abstract] [Full Text] [Related] [New Search]