These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vitro response of macrophage polarization to a keratin biomaterial.
    Author: Fearing BV, Van Dyke ME.
    Journal: Acta Biomater; 2014 Jul; 10(7):3136-44. PubMed ID: 24726958.
    Abstract:
    Macrophage response to biomaterials is emerging as a major focus in tissue repair and wound healing. Macrophages are able to differentiate into two distinct states, eliciting divergent effects. The M1 phenotype is considered pro-inflammatory and up-regulates activity related to tissue destruction, whereas the M2 phenotype is considered anti-inflammatory and supports tissue remodeling. Both are necessary but a fine balance must be maintained as dysregulation of naïve macrophages to M1 or M2 polarization has been implicated in several disease and injury models, and has been suggested as a potential cause for poor outcomes. Keratin biomaterials have been shown using different animal models to promote regeneration in several tissues. A potential common mechanism may be the general capability for keratin biomaterials to elicit beneficial inflammatory responses during the early stages of regeneration. In the present study, a keratin biomaterial was utilized in vitro to examine its effects on polarization toward one of these two macrophage phenotypes, and thus its role in inflammation. Exposure of a monocytic cell line to keratin biomaterial substrates was shown to bias macrophages toward an M2 phenotype, while a collagen control surface produced both M1 and M2 macrophages. Furthermore, keratin treatment was similar to the M2 positive control and was similarly effective at down-regulating the M1 response. Keratin biomaterial influenced greater production of anti-inflammatory cytokines and decreased amounts of pro-inflammatory cytokines. The use of a keratin biomaterial in regenerative medicine may therefore provide additional benefit by regulating a positive remodeling response.
    [Abstract] [Full Text] [Related] [New Search]