These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Spatial distribution of soil organic carbon and its influencing factors in desert grasslands of the Hexi Corridor, northwest China.
    Author: Wang M, Su Y, Yang X.
    Journal: PLoS One; 2014; 9(4):e94652. PubMed ID: 24732375.
    Abstract:
    Knowledge of the distribution patterns of soil organic carbon (SOC) and factors that influence these patterns is crucial for understanding the carbon cycle. The objectives of this study were to determine the spatial distribution pattern of soil organic carbon density (SOCD) and the controlling factors in arid desert grasslands of northwest China. The above- and belowground biomass and SOCD in 260 soil profiles from 52 sites over 2.7×10(4) km2 were investigated. Combined with a satellite-based dataset of an enhanced vegetation index during 2011-2012 and climatic factors at different sites, the relationships between SOCD and biotic and abiotic factors were identified. The results indicated that the mean SOCD was 1.20 (SD:+/- 0.85), 1.73 (SD:+/- 1.20), and 2.69 (SD:+/- 1.91) kg m(-2) at soil depths of 0-30 cm, 0-50 cm, and 0-100 cm, respectively, which was smaller than other estimates in temperate grassland, steppe, and desert-grassland ecosystems. The spatial distribution of SOCD gradually decreased from the southeast to the northwest, corresponding to the precipitation gradient. SOCD increased significantly with vegetation biomass, annual precipitation, soil moisture, clay and silt content, and decreased with mean annual temperature and sand content. The correlation between BGB and SOCD was closer than the correlation between AGB and SOCD. Variables could together explain about 69.8%, 74.4%, and 78.9% of total variation in SOCD at 0-30 cm, 0-50 cm, and 0-100 cm, respectively. In addition, we found that mean annual temperature is more important than other abiotic factors in determining SOCD in arid desert grasslands in our study area. The information obtained in this study provides a basis for accurately estimating SOC stocks and assessing carbon (C) sequestration potential in the desert grasslands of northwest China.
    [Abstract] [Full Text] [Related] [New Search]