These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Incorporating polyoxometalates into a porous MOF greatly improves its selective adsorption of cationic dyes. Author: Yan AX, Yao S, Li YG, Zhang ZM, Lu Y, Chen WL, Wang EB. Journal: Chemistry; 2014 Jun 02; 20(23):6927-33. PubMed ID: 24737342. Abstract: Various polyoxometalates (POMs) were successfully immobilized to the mesoporous coordination polymer MIL-101 resulting in a series of POM-MOF composite materials POM@MIL-101 (POM = K4PW11VO40, H3PW12O40, K4SiW12O40). These materials were synthesized by a simple one-pot reaction of Keggin POMs, tetramethylammonium hydroxide (TMAH), terephthalic acid (H2bdc), and Cr(3+) ions. XRD, FTIR, thermogravimetric analyses (TG), inductively coupled plasma (ICP) spectrometry, and energy-dispersive X-ray spectroscopy (EDX) collectively confirmed the successful combination of POMs and the porous framework. Further, these composites POM@MIL-101 with different loading of POMs were achieved by variation of the POM dosage. Notably, the uptake capacity of MIL-101 towards organic pollutants in aqueous solution was significantly improved by immobilization of hydrophilic POMs into cages of MIL-101. An uptake capacity of 371 mg g(-1), comparable to that of the graphene oxide sponges, and much higher than that of the commercial activated carbon, was achieved at room temperature in 5 min when dipping 20 mg PW11V@MIL-101 in the methylene blue (MB) solution (100 mL of 100 mg L(-1) MB solution). Further study revealed that the POM@MIL-101 composite materials not only exhibited a fast adsorption rate towards dye molecules, but also possessed of selective adsorption ability of the cationic dyes in wastewater. For example, the adsorption efficiency of PW11V@MIL-101 (10 mg) towards MB (100 mL of 10 mg L(-1)) could reach 98 % in the initial 5 min, and it could capture MB dye molecules from the binary mixture of the MB and MO with similar size. Also, the POM@MIL-101 materials could be readily recycled and reused, and no POM leached in the dye adsorption process.[Abstract] [Full Text] [Related] [New Search]