These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fostering hydroxyapatite bioactivity and mechanical strength by Si-doping and reinforcing with multiwall carbon nanotubes. Author: Belmamouni Y, Bricha M, Essassi el M, Ferreira JM, El Mabrouk K. Journal: J Nanosci Nanotechnol; 2014 Jun; 14(6):4409-17. PubMed ID: 24738405. Abstract: The aim of the present study was to prepare resorbable hydroxyapatite (HA) based bone graft materials reinforced with carbon nanotubes as a way to cope with the inability of pure HA to resorb and its intrinsic brittleness and poor strength that restrict its clinical applications under load-bearing conditions. With this purpose, a Si-doped HA nanopowder (n-Si0.8HA) was prepared by chemical synthesis and used as composite matrix reinforced with different amounts of functionalized multiwall carbon nanotubes (MWCNTs). The effect of the added amounts of MWCNTs on the mechanical properties of nanocomposites and their in vitro biomineralization was assessed by bending strength measurements, immersing tests in simulated body fluid solution (SBF), scanning electron microscopy (SEM), and inductively coupled plasma atomic emission spectroscopy analysis (ICP-AES). The bioactivity and bending strength were enhanced, reaching maximum balanced values for an optimum addition of 3 wt.% f-MWCNTs. These results might contribute to broaden the potential applications of HA-based bone grafts.[Abstract] [Full Text] [Related] [New Search]