These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural insight into the binding interactions of modeled structure of Arabidopsis thaliana urease with urea: an in silico study. Author: Yata VK, Thapa A, Mattaparthi VS. Journal: J Biomol Struct Dyn; 2015; 33(4):845-51. PubMed ID: 24738549. Abstract: Urease (EC 3.5.1.5., urea amidohydrolase) catalyzes the hydrolysis of urea to ammonia and carbon dioxide. Urease is present to a greater abundance in plants and plays significant role related to nitrogen recycling from urea. But little is known about the structure and function of the urease derived from the Arabidopsis thaliana, the model system of choice for research in plant biology. In this study, a three-dimensional structural model of A. thaliana urease was constructed using computer-aided molecular modeling technique. The characteristic structural features of the modeled structure were then studied using atomistic molecular dynamics simulation. It was observed that the modeled structure was stable and regions between residues index (50-80, 500-700) to be significantly flexible. From the docking studies, we detected the possible binding interactions of modeled urease with urea. Ala399, Ile675, Thr398, and Thr679 residues of A. thaliana urease were observed to be significantly involved in binding with the substrate urea. We also compared the docking studies of ureases from other sources such as Canavalia ensiformis, Helicobacter pylori, and Bacillus pasteurii. In addition, we carried out mutation analysis to find the highly mutable amino acid residues of modeled A. thaliana urease. In this particular study, we observed Met485, Tyr510, Ser786, Val426, and Lys765 to be highly mutable amino acids. These results are significant for the mutagenesis analysis. As a whole, this study expounds the salient structural features as well the binding interactions of the modeled structure of A. thaliana urease.[Abstract] [Full Text] [Related] [New Search]