These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Design of smart nanogels that respond to physiologically relevant pH values and temperatures.
    Author: Omura T, Ebara M, Lai JJ, Yin X, Hoffman AS, Stayton PS.
    Journal: J Nanosci Nanotechnol; 2014 Mar; 14(3):2557-62. PubMed ID: 24745263.
    Abstract:
    Herein, we report the synthesis and characterization of monodisperse 'smart' nanogels that exhibit a sharp volume phase transition at physiologically relevant temperatures and pH values. The nanogels were prepared by precipitation copolymerization of N-isopropylacrylamide (NIPAAm) and propylacrylic acid (PAA). Briefly, the reaction was performed using a PAA feed of between 0 and 10 mol% in the presence of a crosslinker at 70 degrees C. The size of the nanogel particles was determined as a function of pH and temperature using dynamic light scattering (DLS). At room temperature, the NIPAAm-PAA nanogels were discrete, spherical structures with diameters ranging from 200 to 250 nm. The hydrodynamic diameter of the nanogels decreased to ca. 100-150 nm when the solution temperature was increased to 37 degrees C. At 37 degrees C, when the pKa was below that of the NIPAAm-PAA (ca. 6.0), the gels collapsed and aggregated. However, at 37 degrees C and a physiological pH of 7.4, the nanogels did not fully collapse due to the charge-charge repulsion derived from the ionized carboxyl groups of the PAA. Similar phase transition behavior was observed with the corresponding linear copolymers. Thus, such nanogel particles could be useful for releasing drugs in regions of local acidosis, including sites of infection, tumors, ischemia, and intracellular endosomes.
    [Abstract] [Full Text] [Related] [New Search]