These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tyrosine phosphorylation in human neutrophil. Author: Gomez-Cambronero J, Huang CK, Bonak VA, Wang E, Casnellie JE, Shiraishi T, Sha'afi RI. Journal: Biochem Biophys Res Commun; 1989 Aug 15; 162(3):1478-85. PubMed ID: 2475109. Abstract: Protein tyrosine phosphorylation in human neutrophils was examined by immunoblotting with antibodies specific for phosphotyrosine. The addition of the human hormone granulocyte-macrophage colony stimulating factor to human neutrophils caused an increase in the tyrosine phosphorylation levels of several proteins. The increases in at least two of these proteins having molecular masses of 40 kDa (p40) and 54 kDa (p54) were rapid and were inhibited in pertussis toxin treated cells. The newly synthesized tyrosine kinase inhibitor ST 638 inhibited the increases in the levels of the tyrosine phosphorylation in p92, p78, p54 and p40 proteins. The epidermal growth factor receptor tyrosine kinase inhibitors were less effective. The addition of the chemotactic factor fMet-Leu-Phe to human neutrophils also caused an increase in tyrosine phosphorylation in some of these proteins. The pattern of the fMet-Leu-Phe-induced tyrosine phosphorylation was different from that produced by GM-CSF. The increases were also inhibited by ST 638. In addition, ST 638 inhibited superoxide production but not actin polymerization in control and GM-CSF-treated cells stimulated with fMet-Leu-Phe. Moreover, the active but not inactive phorbol esters increase the tyrosine phosphorylation only in the 40 kDa protein. These results suggest several points: (a) some of the responses produced by GM-CSF and fMet-Leu-Phe are mediated through tyrosine phosphorylation, (b) the GM-CSF receptor is coupled to a pertussis toxin sensitive G-protein, (c) the 40 kDa protein is probably the Gi alpha 2, and (d) the 78 or the 92 kDa protein is most likely the receptor for GM-CSF, which indicates that the receptor may have a tyrosine kinase domain.[Abstract] [Full Text] [Related] [New Search]