These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Applanation tonometry in mice: a novel noninvasive technique to assess pulse wave velocity and arterial stiffness. Author: Leloup AJ, Fransen P, Van Hove CE, Demolder M, De Keulenaer GW, Schrijvers DM. Journal: Hypertension; 2014 Jul; 64(1):195-200. PubMed ID: 24752435. Abstract: Arterial stiffening is the root cause of a range of cardiovascular complications, including myocardial infarction, left ventricular hypertrophy, stroke, renal failure, dementia, and death, and a hallmark of the aging process. The most important in vivo parameter of arterial stiffness is pulse wave velocity (PWV). Clinically, PWV is determined noninvasively using applanation tonometry. Unlike the clinical value of arterial stiffness and PWV, techniques to determine PWV in mice are scarce. The only way to determine aortic PWV noninvasively in the mouse is by using ultrasound echo Doppler velocimetry. It is a fast, efficient, and accurate technique, but the required tools are expensive and technically complex. Here, we describe the development and validation of a novel technique to assess carotid-femoral PWV noninvasively in mice. This technique is based on applanation tonometry as used clinically. We were able to establish a reproducible reference value in wild-type mice (3.96±0.05 m/s) and to detect altered carotid-femoral PWV values in endothelial nitric oxide synthase knockout mice (4.66±0.05 m/s; P<0.001 compared with control), and in mice sedated with sodium pentobarbital (2.89±0.17 m/s; P<0.001 compared with control). Also, carotid-femoral PWV was pharmacologically modulated and measured in a longitudinal experiment with endothelial nitric oxide synthase knockout mice to demonstrate the applicability of this technique. In general, applanation tonometry can be used to measure carotid-femoral PWV noninvasively in mice. The experimental setup is simple, and the technical requirements are basic, making this technique readily implementable in any mouse model-based research facility interested in arterial stiffness.[Abstract] [Full Text] [Related] [New Search]