These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fast T2 mapping with multiple echo, Caesar cipher acquisition and model-based reconstruction. Author: Lankford CL, Dortch RD, Does MD. Journal: Magn Reson Med; 2015 Mar; 73(3):1065-74. PubMed ID: 24753216. Abstract: PURPOSE: Fast, quantitative T2 mapping is of value to both clinical and research environments. However, many protocols utilizing fast spin echo (FSE) pulse sequences contain acceleration-induced artifacts that are compounded when fitting parameter maps, especially in the presence of imperfect refocusing. This work presents a B1 -corrected, model-based reconstruction and associated Cartesian FSE phase-encode ordering that provides enhanced accuracy in T2 estimates compared with other common accelerated protocols. THEORY AND METHODS: The method, known as multiple echo, Caesar cipher acquisition and model-based reconstruction (ME-CAMBREC), directly fitted T2 , flip angle, and proton density maps on a row-by-row basis to k-space data using the extended phase graph model. Regularization was enforced in order to minimize noise amplification effects. ME-CAMBREC was evaluated in computational and physical phantoms, as well as human brain, and compared with other FSE-based T2 mapping protocols, DESPOT2, and parallel imaging acceleration. RESULTS: In computational, phantom, and human experiments, ME-CAMBREC provided T2 maps with fewer artifacts and less or similar error compared with other methods tested at moderate-to-high acceleration factors. In vivo, ME-CAMBREC provided error rates approximately one-half those of other methods. CONCLUSION: Directly fitting multi-echo data to k-space using the extended phase graph can increase fidelity of T2 maps significantly, especially when using an appropriate phase-encode ordering.[Abstract] [Full Text] [Related] [New Search]