These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of the microRNA expression profile in the regenerative neonatal mouse heart by deep sequencing. Author: Liu HL, Zhu JG, Liu YQ, Fan ZG, Zhu C, Qian LM. Journal: Cell Biochem Biophys; 2014 Sep; 70(1):635-42. PubMed ID: 24756729. Abstract: MicroRNAs (miRNAs) are small noncoding RNAs that are involved in key biological processes, including development, differentiation, and regeneration. The global miRNA expression profile that regulates the regenerative potential of the neonatal mouse heart has not been reported. We performed deep sequencing to determine the genome-wide miRNA expression profile of the neonatal mouse heart at three key ages (1, 6, and 7 days). The miRNAs at least 1.4-fold differentially expressed between the three time points were selected for further analysis. Two miRNAs (mmu-miR-22-5p and mmu-miR-338-3p) were significantly upregulated, and nine miRNAs (mmu-miR-324-5p, mmu-miR-337-5p, mmu-miR-339-5p, mmu-miR-365-1-5p, mmu-miR-500-3p, mmu-miR-505-5p, mmu-miR-542-5p, mmu-miR-668-3p, and mmu-miR-92a-1-5p) were significantly downregulated in cardiac tissue of 7-day-old mice compared to 1- and 6-day-old mice. The expression patterns of five significantly different miRNAs were verified by quantitative real-time PCR. Furthermore, the potential targets of these putative miRNAs were suggested using miRNA target prediction tools. The candidate target genes are involved in the myocardial regenerative process, with a prominent role for the Notch signaling pathway. Our study provides a valuable resource for future investigation of the biological function of miRNAs in heart regeneration.[Abstract] [Full Text] [Related] [New Search]