These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Distinct carbon isotope fractionation during anaerobic degradation of dichlorobenzene isomers. Author: Liang X, Mundle SO, Nelson JL, Passeport E, Chan CC, Lacrampe-Couloume G, Zinder SH, Sherwood Lollar B. Journal: Environ Sci Technol; 2014 May 06; 48(9):4844-51. PubMed ID: 24758692. Abstract: Chlorinated benzenes are ubiquitous organic contaminants found in groundwater and soils. Compound specific isotope analysis (CSIA) has been increasingly used to assess natural attenuation of chlorinated contaminants, in which anaerobic reductive dechlorination plays an essential role. In this work, carbon isotope fractionation of the three dichlorobenzene (DCB) isomers was investigated during anaerobic reductive dehalogenation in methanogenic laboratory microcosms. Large isotope fractionation of 1,3-DCB and 1,4-DCB was observed while only a small isotope effect occurred for 1,2-DCB. Bulk enrichment factors (εbulk) were determined from a Rayleigh model: -0.8 ± 0.1 ‰ for 1,2-DCB, -5.4 ± 0.4 ‰ for 1,3-DCB, and -6.3 ± 0.2 ‰ for 1,4-DCB. εbulk values were converted to apparent kinetic isotope effects for carbon (AKIE) in order to characterize the carbon isotope effect at the reactive positions for the DCB isomers. AKIE values are 1.005 ± 0.001, 1.034 ± 0.003, and 1.039 ± 0.001 for 1,2-DCB, 1,3-DCB, and 1,4-DCB, respectively. The large difference in AKIE values between 1,2-DCB and 1,3-DCB (or 1,4-DCB) suggests distinct reaction pathways may be involved for different DCB isomers during microbial reductive dechlorination by the methanogenic cultures.[Abstract] [Full Text] [Related] [New Search]